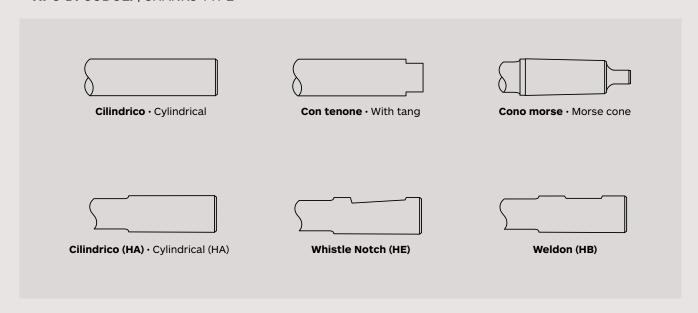
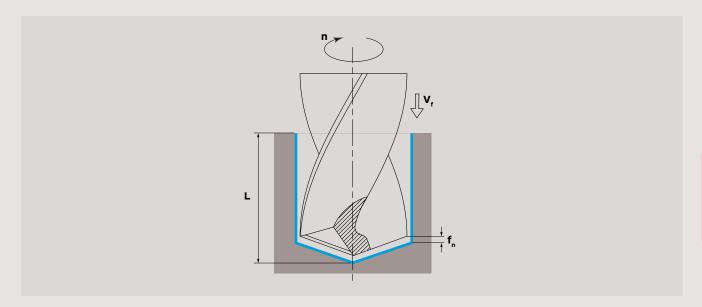





#### ▶ NOMENCLATURA PUNTA | DRILL NOMENCLATURE




#### Legenda | Legend:


| 1  | Lunghezza codolo  | Shank length      |
|----|-------------------|-------------------|
| 2  | Lunghezza corpo   | Body length       |
| 3  | Lunghezza elica   | Flute length      |
| 4  | Codolo cilindrico | Cylindrical shank |
| 5  | Collo             | Neck              |
| 6  | Lunghezza totale  | Total length      |
| 7  | Tenone            | Tang              |
| 8  | Codolo conico     | Conical shank     |
| 9  | Dorso             | Land              |
| 10 | Scanalatura       | Flute             |

| 11 | Diametro Punta        | Drill diameter    |
|----|-----------------------|-------------------|
| 12 | Nocciolo              | Core              |
| 13 | Spessore nocciolo     | Core thickness    |
| 14 | Tagliente principale  | Main cutting edge |
| 15 | Tagliente trasversale | Chisel edge       |
| 16 | Spessore margine      | Margin width      |
| 17 | Angolo d'elica        | Helix angle       |
| 18 | Margine               | Margin            |
| 19 | Fianco principale     | Flank face        |
| 20 | Angolo di taglio      | Rake angle        |

#### ► TIPO DI CODOLI | SHANKS TYPE



#### ▶ FORMULE DI CALCOLO PER FORATURA | CALCULATION FORMULAS FOR DRILLING



#### Formule | Formulas:

#### Velocità di taglio (m/min)

Cutting Speed (m/min)

$$\mathbf{V_c} = \frac{\mathbf{D} \cdot \mathbf{\Pi} \cdot \mathbf{n}}{1000}$$

#### Velocità del mandrino (giri/min)

Spindle Speed (rpm)

$$\mathbf{n} = \frac{V_c \cdot 1000}{d_1 \cdot \Pi}$$

#### Velocità di avanzamento (mm/min)

Feed rate (mm/min)

$$V_f = f_n \cdot n$$

## Avanzamento per giro (mm/giro)

Feed per revolution (mm/rev)

$$\mathbf{f}_{n} = \frac{V_{f}}{n}$$

#### Volume di truciolo asportato (cm³/min)

Chip Removal rate (cm³/min)

$$\mathbf{Q} = \frac{D \cdot f_n \cdot V_c}{4}$$

#### Tempo di lavorazione (s)

Machining time (s)

$$T_s = \frac{L \cdot 60(s)}{V_f}$$

#### Potenza netta mandrino (Kw)

Spindle net power (Kw)

$$\mathbf{P_c} = \frac{f_n \cdot V_c \cdot D \cdot K_c}{240 \cdot 10^3}$$

#### Momento torcente (Nm)

Torque (Nm)

$$\mathbf{M_c} = \frac{\mathsf{P_c} \cdot 30 \cdot 10^3}{\mathsf{\Pi} \cdot \mathsf{n}}$$

#### Forza di avanzamento (n)

Feed force (n)

$$\mathbf{F}_{f} = 0.5 \cdot K_{c} \cdot \frac{D}{2} \cdot f_{n} \cdot \sin K_{r}$$

#### Legenda | Legend:

| D              | Diametro di taglio                           | Cutting diameter                         |
|----------------|----------------------------------------------|------------------------------------------|
| L              | Profondità di foratura                       | Drilling depth                           |
| K <sub>c</sub> | Forza di taglio specifica<br>(Vedi pag. 364) | Specific cutting force<br>(See page 364) |

#### Angolo di attacco utensile. K,

Di solito si considera come valore 90° ossia equivalente a 1.

#### Lead angle. Usually we consider 90° it's value, equivalent to 1.

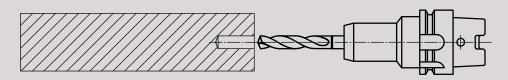


# $\blacktriangleright$ Valori K $_{\rm c}$ in funzione del componente da lavorare K $_{\rm c}$ Values depending on the component to be machined

| Materiali   Materials                                  | Specifica materiale   Material details           | Durezza   Hardness | K <sub>c</sub> |
|--------------------------------------------------------|--------------------------------------------------|--------------------|----------------|
|                                                        | C=0,15                                           | 125 HB             | 1900           |
| Acciaio al carbonio<br>Carbon steel                    | C=0,35                                           | 150 HB             | 1900           |
|                                                        | C=0,70                                           | 200 HB             | 1900           |
| Acciaio debolmente legato                              | Ricotto   Annealed                               | 180 HB             | 2100           |
| Low-alloyed steel                                      | Bonificato   Reclaimed                           | 300 HB             | 2700           |
| Acciaio fortemente legato                              | Ricotto   Annealed                               | 200 HB             | 2600           |
| High-Alloyed Steel                                     | Bonificato   Reclaimed                           | 325 HB             | 3900           |
|                                                        | Non legato   Unalloyed                           | 180 HB             | 2000           |
| Acciaio in getti                                       | Debolmente legato   Low-alloyed                  | 200 HB             | 2500           |
| Steel castings                                         | Fortemente legato   High-alloyed                 | 225 HB             | 2700           |
|                                                        | Al manganese 12%   Manganese 12%                 | 250HB              | 3600           |
| Acciaio inox                                           | Martensitico/Ferritico   Ferritic/Martensitic    | 200 HB             | 2300           |
| Stainless Steel                                        | Austenitico   Austenitic                         | 180 HB             | 2450           |
| Acciaio Temprato   Hardened Steel                      | -                                                | 50-65 HRC          | 4500           |
| Ghisa Malleabile                                       | Truciolo Corto   Short chip                      | 130                | 1100           |
| Malleable Cast Iron                                    | Truciolo Lungo   Long chip                       | 230                | 1100           |
| Ghisa Grigia                                           | Bassa resistenza   Low resistance                | 180                | 1100           |
| Gray Cast Iron                                         | Alta resistenza   High resistance                | 260                | 1500           |
| Ghisa Nodulare GS                                      | Ferritica   Ferritic                             | 160                | 1100           |
| Nodular Cast Iron GS                                   | Perlitica   Perlitic                             | 250                | 1800           |
| <b>Ghisa Fusa in conchiglia</b><br>Chilled cast iron   | -                                                | 400                | 3000           |
| Rame elettrolitico<br>Electrolytic copper              | -                                                | 100                | 1750           |
|                                                        | Legate al piombo   Lead-bound                    | 110                | 700            |
| <b>Leghe di bronzo / ottone</b><br>Bronze/brass alloys | Ottone/Ottone rosso   Brass/Red brass            | 90                 | 750            |
|                                                        | Bronzo/ Fosforo   Bronze/ Phosphor               | 100                | 1750           |
| Leghe di Alluminio   Aluminium alloys                  | Non trattabili termicamente   Not heat-treatable | 75                 | 750            |



- I valori di K (N/mm²) specifica si intendono di riferimento.
- Il  $K_c$  (N/mm²) dipende non solo dal materiale, ma anche dall'angolo di spoglia superiore e dall'avanzamento al giro.


- $\bullet$  The specified  $\rm K_{\rm c}$  (N/mm²) values are intended as a reference.
- $\bullet$  The K<sub>c</sub> (N/mm²) depends not only on the material, but also on the rake angle and the feed per revolution.

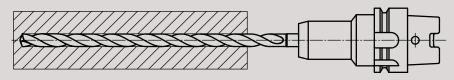
## **INFORMAZIONI TECNICHE** | TECHNICAL DATA

**FORATURA I DRILLING** 



#### ► STRATEGIE PER LA FORATURA PROFONDA | DEEP HOLE STRATEGIES




#### **1** FORO PILOTA | Pilot drill

- Selezionare la punta pilota idonea al materiale da lavorare avente angolo di taglio ed una tolleranza maggiore rispetto alla punta per foratura profonda.
- Select pilot drill suitable for the material to be machined with a rake angle and higher tolerance than the deep hole drill.
- Profondità minima del foro pilota 1,5xD. Minimum depth of pilot hole 1.5xD.



#### 2 INGRESSO PUNTA NEL FORO PILOTA | DRILL ENTRY INTO PILOT HOLE

- Nella fase d'ingresso della punta per foratura profonda, impostare un basso numero di giri (n=300 giri/min) ed un avanzamento ridotto (V<sub>r</sub>= 500 mm/min).
  - In the input phase of the deep hole drill, set a low spindle speed (n=300 REV/MIN) and a penetratrion rate reduced (Vf= 500 mm/min).
- In prossimità del fondo del foro pilota, arrestare l'avanzamento, aumentare il numero di giri consigliato nella tabella dei parametri di taglio ed azionare il refrigerante interno.
  - When approaching the bottom of the pilot hole, stop the penetration rate and increase the spindle speed recommended in the cutting data table and start the internal coolant.



#### **6** FORATURA PROFONDA | Deep hole drill

- Aumentare l'avanzamento fino al raggiungimento del parametro consigliato in tabella. Increase the penetration rate until the recommended cutting data table is reached.
- Forare fino alla profondità desiderata senza step.
   Drilling to the desired depth without steps.
- In caso di fori passanti ridurre l'avanzamento del 50% durante l'uscita per evitare il rischio di rotture e scheggiamenti. In the case of through holes, reduce the penetration rate by 50% during exit to avoid the risk of breakage and chipping.



#### 4 ARRETRAMENTO DELLA PUNTA | DRILL SPRING BACK

- Estrarre la punta fino alla profondità del foro pilota riducendo il numero di giri a circa 300 giri/min. Extract the drill to the depth of the pilot hole by reducing the speed to about 300 rev/min.
- Spegnere il refrigerante e fuoriuscire dal foro con avanzamento pari a (V<sub>f</sub>= 1000 mm/min). Switch off the coolant and exit the hole with a penetration rate of (Vf= 1000 rev/min).



## ▶ Risoluzione dei problemi | Troubleshooting

| Utilizzo di una punta usurata.<br>Use of a worn out drill.<br>Elevata velocità di avanzamento.                | Verificare l'usura della punta e sostuirla con una nuov<br>Check the drill wear and replace it with the new one.  Consultare le sezioni "parametri di taglio" presenti a           |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elevata velocità di avanzamento.                                                                              | Consultare le sezioni "parametri di taglio" presenti a                                                                                                                             |
| Penetration rate is too high.                                                                                 | catalogo.  Refer to the "cutting data" sections in the catalogue.                                                                                                                  |
| Scarsa evacuazione dei trucioli.<br>Poor chip evacuation.                                                     | Selezionare la tipologia di punta corretta. Select the correct drill.                                                                                                              |
| Geometria non idonea al tipo di materiale.<br>Cutting geometry is not correct for the kind of work-<br>piece. |                                                                                                                                                                                    |
| Instabilità del pezzo bloccato durante la foratura.<br>Workpiece is not stable during the drilling.           | Verificare il sistema di bloccaggio del pezzo.<br>Check the clamping system.                                                                                                       |
| P<br>C<br>C<br>P                                                                                              | Roor chip evacuation.  Geometria non idonea al tipo di materiale. Sutting geometry is not correct for the kind of work- iece.  Instabilità del pezzo bloccato durante la foratura. |

|                            | Velocità di taglio ridotta.<br>Cutting speed is too low.                                                      | Consultare le sezioni "parametri di taglio" presenti a catalogo.<br>Refer to the "cutting data" sections in the catalogue. |
|----------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| USURA TAGLIENTE PRINCIPALE | Elevata velocità di avanzamento.<br>Penetration rate is too high.                                             |                                                                                                                            |
| Wear on main cutting edge  | Eccessiva oscillazione radiale della punta durante la lavorazione. Run-out is too high during the processing. | Controllare e minimizzare il run-out della punta.<br>Check and reduce the run-out of the drill.                            |
|                            | Insufficiente quantità di lubrorefrigerante.<br>Insufficient coolant.                                         | Aumentare la pressione del lubrorefrigerante.<br>Increase the coolant pressure.                                            |

|                                            | Velocità di taglio ridotta.<br>Cutting speed is too low.                                                      | Consultare le sezioni "parametri di taglio" presenti a catalogo. Refer to the "cutting data" sections in the catalogue. |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| USURA TAGLIENTE TRASVERSALE Wear on chisel | Elevata velocità di avanzamento.<br>Penetration rate is too high.                                             |                                                                                                                         |
| cutting edge                               | Eccessiva oscillazione radiale della punta durante la lavorazione. Run-out is too high during the processing. | Controllare e minimizzare il run-out della punta.<br>Check and reduce the run-out of the drill.                         |

|                          | <b>Utilizzo di una punta usurata.</b><br>Use of a worn out drill.                                             | Verificare l'usura della punta e sostuirla con una nuova<br>Check the wear drill and replace it with a new one           |
|--------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                          | Eccessiva oscillazione radiale della punta durante la lavorazione. Run-out is too high during the processing. | Controllare e minimizzare il run-out della punta.<br>Check and reduce the run-out of the drill.                          |
| SCHEGGIATURA<br>Chipping | Insufficiente quantità di lubrorefrigerante.<br>Insufficient coolant.                                         | Aumentare la pressione del lubrorefrigerante. Increase the coolant pressure.                                             |
|                          | Instabilità del pezzo bloccato durante la foratura.<br>Workpiece is not stable during the drilling.           | Verificare il sistema di bloccaggio del pezzo.<br>Check the clamping system.                                             |
|                          | Elevata velocità di avanzamento. Penetration rate is too high.                                                | Consultare le sezioni "parametri di taglio" presenti a catalogo.  Refer to the "cutting data" sections in the catalogue. |

| TAGLIENTE DI<br>RIPORTO<br>Built-up cutting | Velocità di taglio ridotta. Cutting speed is too low.  Il tagliente genera una temperatura troppo bassa. Cutting temperature is too low. | Consultare le sezioni "parametri di taglio" presenti a catalogo.  Refer to the "cutting data" sections in the catalogue.                   |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| edge                                        | Punta priva di rivestimento. Drill without coating.                                                                                      | Selezionare una punta con rivestimento idoneo al materiale da lavorare. Select a drill with the correct coating for the kind of workpiece. |

# INFORMAZIONI TECNICHE | TECHNICAL DATA

FORATURA | DRILLING



## ▶ Risoluzione dei problemi | Troubleshooting

| Problema   Problem                                 | Cause   Causes                                                                                                | Soluzioni   Corrective Action                                                                                            |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                    | Eccessiva oscillazione radiale della punta durante la foratura.<br>Run-out is too high during the processing. | Controllare e minimizzare il run-out della punta.<br>Check and reduce the run-out of the drill.                          |
| FORO<br>SOVRADIMENSIONATO                          | Insufficiente quantità di lubrorefrigerante.<br>Insufficient coolant quantity.                                | Aumentare la pressione del lubrorefrigerante. Increase the coolant pressure.                                             |
| Oversized hole                                     | Instabilità del pezzo bloccato durante la foratura.<br>The clamping system is not stable during the drilling. | Verificare il sistema di bloccaggio del pezzo.<br>Check the clamping system.                                             |
|                                                    | Scarsa evacuazione dei trucioli.<br>Poor chip evacuation.                                                     | Selezionare la tipologia di punta corretta.<br>Select the correct drill.                                                 |
|                                                    |                                                                                                               |                                                                                                                          |
| MATASSE DI<br>TRUCIOLO                             | <b>Velocità di avanzamento ridotta.</b><br>Penetration rate is too low.                                       | Consultare le sezioni "parametri di taglio" presenti a catalogo.  Refer to the "cutting data" sections in the catalogue. |
| Bad/long chip                                      | Punta non idonea al tipo di materiale da lavorare.<br>Wrong drill for the kind of workpiece.                  | Selezionare la tipologia di punta corretta.<br>Select the correct drill.                                                 |
|                                                    |                                                                                                               |                                                                                                                          |
| BAVE IN USCITA                                     | Elevata velocità di avanzamento.<br>Penetration rate is too high.                                             | Consultare le sezioni "parametri di taglio" presenti a catalogo.  Refer to the "cutting data" sections in the catalogue. |
| Exit burrs                                         | <b>Utilizzo di una punta usurata.</b> Use of the worn out drill.                                              | Verificare l'usura della punta e sostuirla con una nuova.<br>Check the wear drill and replace it with the new one.       |
|                                                    |                                                                                                               |                                                                                                                          |
|                                                    | Scarsa evacuazione dei trucioli.<br>Poor chip evacuation.                                                     | Selezionare la tipologia di punta corretta.<br>Select the correct drill.                                                 |
| COADCA FINITUDA                                    | Elevata velocità di avanzamento.<br>Penetration rate is too high.                                             | Consultare le sezioni "parametri di taglio" presenti a catalogo.  Refer to the "cutting data" sections in the catalogue. |
| SCARSA FINITURA SUPERFICIALE Bad surface finishing | Insufficiente quantità di lubrorefrigerante.<br>Insufficient coolant quantity.                                | Aumentare la pressione del lubrorefrigerante. Increase the collant pressure.                                             |
|                                                    | Instabilità del pezzo bloccato durante la foratura.<br>Clamping system is not stable during the drilling.     | Verificare il sistema di bloccaggio del pezzo.<br>Check the clamping system.                                             |
|                                                    | Sporgenza della punta elevata.<br>Drill overhang is too high.                                                 | Ridurre la sporgenza della punta.<br>Reduce the drill overhang.                                                          |